Enumeration of Hopf-Galois structures on cyclic field extensions

George Samways
University of Exeter
Supervised by Nigel Byott
gs348@exeter.ac.uk

Hopf-Galois extensions I

Let L / K be a Galois extension of degree n, with Galois group $\operatorname{Gal}(L / K)=\Gamma$, and let H be a K-Hopf algebra. The field L is an H-module algebra if it satisfies the following, $\forall h \in H$ and $\forall x, y \in L$:

$$
\begin{aligned}
h(x y) & =\sum h_{(1)}(x) h_{(2)}(y) \\
h(1) & =\varepsilon(h) 1
\end{aligned}
$$

If L is a H-module algebra, and the map:

$$
\begin{aligned}
j: L \otimes H & \rightarrow \operatorname{End}_{K}(L) \\
j(x \otimes h)(y) & =x h(y)
\end{aligned}
$$

is an isomorphism, then H together with its action on elements of L is called a Hopf-Galois structure on L / K.

Hopf-Galois extensions II

Greither and Pareigis showed that this is equivalent to a question based entirely in group theory.

Theorem ([Greither and Pareigis, 1987])

Let L / K be a Galois extension, with $G a l(L / K)=\Gamma$. There is a bijection between regular subgroups G of Perm (Γ) normalised by $\lambda(\Gamma)$, and Hopf-Galois structures on L / K.

This theorem gives us a method for finding Hopf-Galois structures, but it is in general difficult due to the size of Perm (Γ). Byott [Byott, 1996] reversed the relationship between G and Γ : to find Hopf-Galois structures, we can consider regular embeddings of Γ into the holomorph $\mathrm{Hol}(G)$.

Previous Work I

We make use of the following results from earlier work on enumerating Hopf-Galois structures.

Theorem ([Byott, 2007])

Let L / K be a cyclic Galois extension of degree $2^{n}, n \geq 3$. Then L / K admits $3 \cdot 2^{n-2}$ Hopf-Galois structures: 2^{n-2} each of cyclic, dihedral, and generalised quaternion type.

Theorem ([Kohl, 1997])

Let L / K be a cyclic Galois extension of degree p^{n}, where p is an odd prime. Then there are p^{n-1} Hopf-Galois structures, all of cyclic type.

Previous Work II

Theorem ([Alabdali and Byott, 2017])

Let L / K be a cyclic Galois extension of squarefree degree n, and let G be any group of order n. Let $z=|Z(G)|, g=|[G, G]|$ and $d=n /(g z)$. Then there are $2^{\omega(g)} \varphi(d)$ Hopf-Galois structures of type G, where $\omega(g)$ is the number of distinct prime factors of g.

We wish to generalise these results to cyclic Galois extensions of arbitrary degree. In particular, if $4 \nmid n$ then for a given type G we can find the number of structures in terms of G.

Characteristic subgroups

Let G be some abstract group. We call a subgroup $H \subseteq G$ characteristic if, for all $\theta \in \operatorname{Aut}(G)$, $\theta(H)=H$, and write H char G.

Theorem

Let G be the type of a Hopf-Galois structure on L/K, and let H char G. Then H, respectively G / H, is the type of a Hopf-Galois structure on some Galois extension with Galois group Δ, respectively Γ / Δ, where Δ is the subgroup of Γ of order $|H|$.

Creating a subgroup series for G I

Throughout, given a prime divisor $p \mid n$, we write n_{p} to denote the highest power of p dividing n. Let G be the type of a Hopf-Galois structure on L / K. Let G_{1} be a minimal characteristic subgroup - a characteristic subgroup which is characteristically simple. Since G_{1} char G, G_{1} is the type of a Hopf-Galois structure. By Byott [Byott, 2015], G_{1} must be an abelian simple group, so it is of the form C_{p}^{m} where p is a prime - that is, G_{1} has elementary abelian type, and the associated extension is cyclic of prime power degree. Then, due to previous results, p^{m} is prime (i.e. $m=1$) or $p^{m}=4$ and $G_{1} \cong C_{2} \times C_{2}$.

Creating a subgroup series for G II

G / G_{1} is also the type of a Hopf-Galois structure on some cyclic extension. As before, let \bar{G}_{2} be a minimal characteristic subgroup of G / G_{1} : by the above, \bar{G}_{2} is either C_{p} or $C_{2} \times C_{2}$. Additionally, $\bar{G}_{2} \cong G_{2} / G_{1}$ for some subgroup $G_{1} \triangleleft G_{2} \triangleleft G$, and \bar{G}_{2} char G / G_{1} implies that G_{2} char G.
We continue this to find further subgroups G_{3}, \ldots, G_{r}, until G / G_{r} is characteristically simple. Then we have a normal series:

$$
1 \triangleleft G_{1} \triangleleft \cdots \triangleleft G_{r} \triangleleft G,
$$

in which each G_{i} char G, and each subquotient G_{i} / G_{i-1} is isomorphic to either $C_{p_{j}}$ for some prime p_{j}, or $C_{2} \times C_{2}$.

Creating a subgroup series for G III

Let $n=\prod p_{i}^{n_{p_{i}}}$ where the distinct primes p_{i} are labelled so that $p_{i}>p_{i+1}$. We may choose the series such that the subquotients are 'ordered', in the sense that if $G_{i} / G_{i-1} \cong C_{p}$ and $G_{i+1} / G_{i} \cong C_{q}$, then $p \geq q$, and all cyclic subquotients appear before any $C_{2} \times C_{2}$ terms appear. Additionally, at most one subquotient $\left(G / G_{r}\right)$ is isomorphic to $C_{2} \times C_{2}$. Then we may add the term G_{r+1} :

$$
1 \triangleleft G_{1} \triangleleft \cdots \triangleleft G_{r} \triangleleft G_{r+1} \triangleleft G,
$$

where $G_{r+1} / G_{r} \cong C_{2}$ is a normal subgroup of $C_{2} \times C_{2}$, to get a normal series with all subquotients cyclic. Hence G is supersolvable.

Sylow subgroups of G I

$$
1 \triangleleft G_{0} \triangleleft \cdots \triangleleft G_{r} \triangleleft G
$$

Assume that p_{1} is odd, and consider the term $G_{n_{p_{1}}}$ in this series. $G_{n_{p_{1}}}$ is a characteristic subgroup of G of order $p_{1}^{n_{\rho_{1}}}$, so is the unique p_{1}-Sylow subgroup of G. It is also the type of a Hopf-Galois structure on a cyclic extension of prime power degree, so by previous results it is cyclic.

Now we consider $G / G_{n_{p_{1}}}$. This is the type of a Hopf-Galois structure on a cyclic field extension, so by the above we can form a similar series for $G / G_{n_{p_{1}}}$. Then, again assuming that p_{2} is odd, $G / G_{n_{p_{1}}}$ has a unique cyclic p_{2}-Sylow subgroup H.

Sylow subgroups of G II

The p_{2}-Sylow subgroup H of $G / G_{n_{p_{1}}}$ is isomorphic to $S G_{n_{p_{1}}} / G_{n_{p_{1}}}$, where S is some p_{2}-Sylow subgroup of G. We have:

$$
H \cong S G_{n_{p_{1}}} / G_{n_{p_{1}}} \cong S /\left(S \cap G_{n_{p_{1}}}\right) \cong S,
$$

so the p_{2}-Sylow subgroup of G is also cyclic (although not necessarily unique). Similarly we can find the p_{k}-Sylow subgroup for an odd prime p_{k} by performing the above steps with the quotient $G / G_{n_{p_{1}}+\cdots+n_{p_{k-1}}}$.

Hence every p-Sylow subgroup of G for an odd prime p is cyclic, and by quotienting out at the appropriate term in the series we find that the 2-Sylow subgroup appears as the type of a Hopf-Galois structure on a cyclic extension. Then by previous results the 2-Sylow subgroup must be one of three types: cyclic, dihedral, or of generalised quaternion type.

Presentations of G I

If the 2-Sylow subgroup is cyclic, G is a C-group (i.e. all of its Sylow subgroups are cyclic). Then G has the following presentation, due to Murty and Murty [Murty and Murty, 1984]:

$$
G=\left\langle\sigma, \tau \mid \sigma^{e}=\tau^{d}=1, \tau \sigma \tau^{-1}=\sigma^{r}\right\rangle
$$

Here $\operatorname{gcd}(d, e)=1$ and $d e=n$. Further, $\operatorname{ord}_{e}(r)=d^{\prime}$, where $\gamma(d)\left|d^{\prime}\right| d$. Here $\gamma(d)=\prod_{p \mid d} p$ is the radical of d. In particular, if n is squarefree then $\gamma(d)=d^{\prime}=d$ and we retrieve the setting in Alabdali's paper.

Presentations of G II

On the other hand, if the 2-Sylow subgroup is not cyclic, it contains a normal cyclic subgroup of index 2, and we have the following presentation due to Zassenhaus [Zassenhaus, 1936]:

$$
G=\left\langle\sigma, \tau, \eta \mid \sigma^{e}=1, \tau^{d}=\sigma^{t}, \tau \sigma \tau^{-1}=\sigma^{r}, \eta \sigma \eta^{-1}=\sigma^{\ell}, \eta \tau \eta^{-1}=\tau^{\ell}\right\rangle
$$

Here $\operatorname{ord}_{e}(r)=d, \operatorname{gcd}(e, r-1)=z, z t=m, \ell \equiv 1(\bmod d)$ and $\ell^{2} \equiv 1(\bmod e)$. Further, either $\eta^{2}=1$ or $d \equiv 0(\bmod 2)$ and $\eta^{2}=\tau^{z t / 2}$. Note that this case can only occur if $4 \mid n$, as otherwise the 2-Sylow subgroup must be cyclic.

For now we work in the first presentation where G is a C-group, and the 2-Sylow subgroup is cyclic.

Holomorph of G I

We first find the form of $\operatorname{Hol}(G)=G \rtimes \operatorname{Aut}(G)$. Any element of G has the form $\sigma^{\alpha} \tau^{\beta}$. To simplify notation, we introduce:

$$
S(x, k)=1+x+x^{2}+\cdots+x^{k-1}, \quad z=\operatorname{gcd}(e, r-1)
$$

Let $\theta \in \operatorname{Aut}(G)$. We have:

$$
\theta(\sigma)=\sigma^{s}, \quad \theta(\tau)=\sigma^{a} \tau^{b}
$$

where $\operatorname{gcd}(e, s)=1, a \equiv 0(\bmod z)$, and $b \equiv 1\left(\bmod d^{\prime}\right)$.

$$
\begin{aligned}
\theta\left(\tau \sigma \tau^{-1}\right) & =\sigma^{a} \tau^{b} \sigma^{s} \tau^{-b} \sigma^{-a} \\
& =\sigma^{s r^{b}} \\
& =\sigma^{s r}=\theta\left(\sigma^{r}\right) .
\end{aligned}
$$

Holomorph of G II

We denote a given automorphism by $\theta_{a, b, s}$. Then an element of $\operatorname{Hol}(G)$ has the form $\left(\sigma^{\alpha} \tau^{\beta}, \theta_{a, b, s}\right)$, with multiplication given by:

$$
\left(\sigma^{\alpha} \tau^{\beta}, \theta_{a, b, s}\right) \cdot\left(\sigma^{\gamma} \tau^{\delta}, \theta_{c, d, t}\right)=\left(\sigma^{\alpha+\gamma s r^{\beta}+a S(r, \delta)} \tau^{\beta+\delta b}, \theta_{a+c s, b d, s t}\right)
$$

Regularity conditions I

Consider a regular cyclic subgroup of $\operatorname{Hol}(G), C=\langle\hat{x}\rangle$, where $\hat{x}=\left(\sigma^{\alpha} \tau^{\beta}, \theta_{a, b, s}\right)$. Powers of \hat{x} have the form:

$$
\hat{x}^{k}=\left(\sigma^{\alpha^{\prime}} \tau^{\beta S(b, k)}, \theta_{a^{\prime}, b^{\prime}, s^{\prime}}\right)
$$

for some $\alpha^{\prime}, a^{\prime}, b^{\prime}, s^{\prime}$. Since C is regular, there is some k so that $\hat{x}^{k} \cdot 1_{G}=\tau$. This then implies that $\beta S(b, k) \equiv 1(\bmod d) \Longrightarrow \operatorname{gcd}(k, d)=1$.

Regularity conditions II

Choosing k such that $\operatorname{gcd}(k, e)=1$, we then have a k coprime to n (i.e. $C=\left\langle\hat{x}^{k}\right\rangle$) such that:

$$
\hat{x}^{k}=\left(\sigma^{\alpha^{\prime}} \tau, \theta_{a^{\prime}, b^{\prime}, s^{\prime}}\right)
$$

In fact, there are $\varphi(e)$ generators of C with this form. We may now assume that if $C=\langle x\rangle$ is a regular cyclic subgroup of $\operatorname{Hol}(G), x$ has the form of \hat{x}^{k} above.

Theorem

Let $C=\langle x\rangle$ be a cyclic subgroup of $\mathrm{Hol}(G)$. Then C is regular if and only if $\left\langle x^{d}\right\rangle$ acts transitively on $\langle\sigma\rangle$.

Regularity conditions III

We now consider the simpler problem of when $\left\langle x^{d}\right\rangle$ is transitive on $\langle\sigma\rangle$.

$$
x^{d i}=\left(\sigma^{A(d i)}, \theta_{a S(s, d i), b^{d i}, s^{d i}}\right)
$$

where $A(d i)=\alpha S(r s, d i)+a \sum_{h=0}^{d i-1} S(s, h) r^{h}$. In particular, $A(d i)$ should take all residue classes modulo e as i varies in order for this to be transitive.

Our strategy is to find conditions so that $A(d i)$ takes all residue classes modulo $q^{n_{q}}$ for primes $q \mid e$. Defining $g=e / z$ we can divide the primes q into those dividing z and those dividing g.

Regularity conditions IV

If $q \mid z$ then $a \equiv 0\left(\bmod q^{n_{q}}\right)$, so the expression simplifies to $A(d i) \equiv \alpha S(r s, d i)\left(\bmod q^{n_{q}}\right)$.

Theorem

If $A(d i)$ takes all residue values $\left(\bmod q^{\gamma_{q}}\right)$ then $s \equiv 1\left(\bmod q^{\delta}\right)$ for some $1 \leq \delta \leq \gamma$, and $q \nmid \alpha$.

Regularity conditions V

If $q \mid g$, a may now be non-zero. Note that $r \not \equiv 0,1(\bmod q)$ as it has order dividing d and $q \nmid \operatorname{gcd}(e, r-1)$, so in this case we cannot have $q=2$.

Theorem

If $A(d i)$ takes all residue values $\left(\bmod q^{\gamma_{q}}\right)$ then either:
(1) $s \equiv 1(\bmod q)$ and $q \nmid a$, or
(2) $s \equiv r^{-1}(\bmod q)$ and $q \nmid \alpha(s-1)+a$.

We can then combine our results for all primes $q \mid e$ to obtain conditions on α, a, s for $\left\langle x^{d}\right\rangle$ to be transitive on $\langle\sigma\rangle$.

Enumeration of Hopf-Galois structures I

Counting the choices of α, a, s, we get $2^{\omega(g)} \frac{e}{\gamma(e)} \varphi(z) g \varphi(g)$ generators of regular cyclic subgroups in $\operatorname{Hol}(G)$ of the form where τ has a single exponent (here $\omega(g)$ denotes the number of distinct prime factors of g). Since each regular cyclic subgroup has $\varphi(e)=\varphi(z) \varphi(g)$ such generators, we get the total number of regular subgroups as:

$$
2^{\omega(g)} \frac{e}{\gamma(e)} g
$$

Enumeration of Hopf-Galois structures II

We now find the total number of Hopf-Galois structures of type G, using the formula from [Byott, 1996]:

$$
\frac{\left|\operatorname{Aut}\left(C_{n}\right)\right|}{|\operatorname{Aut}(G)|} 2^{\omega(g)} \frac{e}{\gamma(e)} g=2^{\omega(g)} \frac{e}{\gamma(e)} \frac{d^{\prime}}{d} \varphi(d) .
$$

Note that in the squarefree case, $e=\gamma(e), d^{\prime}=d$, and we retrieve the number of structures in the squarefree case: $2^{\omega(g)} \varphi(d)$. This is a complete result for groups when $4 \nmid n$ since in that case we can guarantee the 2-Sylow subgroup will be cyclic.

Groups without a cyclic 2-Sylow subgroup I

Work on the case where the 2-Sylow subgroup is not cyclic is ongoing. In this case, G has a normal subgroup G^{\prime} of index 2 which is itself a C-group. We can split the group G^{\prime} into primes q for which the q-Sylow subgroups are normal, and primes p for which the p-Sylow subgroups are not normal:

$$
G^{\prime}=\left(\prod_{q \mid e} C_{q^{n_{q}}} \rtimes \prod_{p \mid d} C_{p^{n_{p}}}\right)
$$

Then we have that $G / G^{\prime} \cong\langle\eta\rangle$ has order 2 , and depending on the structure of the 2-Sylow subgroup of G the η may have order 2 or 4 .

Currently we are trying to understand the shape of $\operatorname{Aut}(G)$ in this setting. For example, in the case where all p-Sylow subgroups of G^{\prime} are normal (G^{\prime} is cyclic) we should agree with results on dihedral extensions.

References I

A. Alabdali and N. Byott (2017)

Counting Hopf-Galois structures on cyclic field extensions of squarefree degree.
J. Algebra 493, 1-19

R N. Byott (2015)
Solubility criteria for Hopf-Galois structures.
New York J. Math. 21, 883-903.
N. N. P. Byott (2007)

Hopf-Galois structures on almost cyclic field extensions of 2-power degree.
J. Algebra 318, 351-371.

國 N. P. Byott (1996)
Uniqueness of Hopf Galois Structure for Separable Field Extensions.
Commutative Algebra 24(10), 3217-3228.

References II

R. Childs (1989)

On the Hopf Galois theory for separable field extensions.
Commutative Algebra 17, 809-825.

- C. Greither, B. Pareigis (1987)

Hopf Galois theory for separable field extensions.
J. Algebra 106 (1), 239-258.

國 T. Kohl (1997)
Classification of the Hopf Galois Structures on prime power radical extensions.
J. Algebra 207, 525-546.

國 Murty, M. R., Murty, V. K. (1984)
On groups of squarefree order.
Math. Ann, 267(3), 299-309.

References III

囯 Zassenhaus, H. (1936)
Über endliche Fastkörper.
Abhandlungen aus dem Mathematischen Seminar der Hamburgischen Universität, 11(1), 187-220.

